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From static to temporal networks

Empirical data on interacting systems are more and more often time-resolved:
timings at which events take place in the system.

Observations Models Algorithms?
Node and link dynamics Burstiness and Modularity
exhibits complex temporal correlations ?

temporal patterns affect spreading ?



Routing algorithms for static networks
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On static networks: finding shortest paths can be done efficiently



Routing algorithms for static networks
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On static networks: finding shortest paths can be done efficiently
... but requires complete knowledge of the system.



Routing algorithms for static networks

However, some networks can be navigated efficiently by using only local information

(see Milgram)

Navigation in a small world

t is easier to find short chains between points in some networks than others.

principle that most of us are linked by

short chains of acquaintances — was
first investigated as a question in sociclo-
gy and is a feature of a range of networks
arising in nature and technology™. Experi-
mental study of the phenomenon' revealed
that it has two fundamental components:
first, such short chains are ubiquitous, and
second, individuals operating with purely
local information are very adept at finding
these chains. The first issue has been
analysed”™, and here | investigate the sec-
ond by modelling how individuals can find
short chains in a large social network.

I have found that the cues needed for
discovering short chains emerge in a very
simple network model. This model is based
on early experiments', in which source indi-
viduals in Nebraska attempted to transmit a
letter to a target in Massachusetts, with the
letter being forwarded at each step to some-
one the holder knew on a first-name basis.
The networks underlying the model follow
the “small-world’ paradigm™ they are rich
in structured short-range connections and
hawve a few random long-range connections.

Long-range connections are added to a
two-dimensional lattice controlled by a
clustering exponent, o, that determines the

menhahiliter Af 4 cannocrtian haturoan fuen

The small-world phenomencn the

tions follow an inverse-square distribution,
there is a decentralized algorithm that
achieves a very rapid delivery time; T is
bounded by 2 function proportional to
(logN})'. The algorithm achieving this
bound is a ‘greedy’ heuristic: each message
holder forwards the message across a con-

brief communications
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nection that brings it as close as possible to
the target in lattice distance. Moreover,
a=1 is the only exponent at which any
decentralized algorithm can achieve a deliv-
ery time bounded by any polynomial in
log: for every other exponent, an asymp-
totically mwuch larger delivery time is
required, regardless of the algorithm
employed (Fig. 1b).

These results indicate that efficient navi-
gability is 2 fundamental property of only
some small-world structures. The results
also generalize to d-dimensional lattices for
any value of d2 1, with the critical value of
the clustering exponent becoming a=d.
Simulations of the greedy algorithm yield
results that are qualitatively consistent with
the asymptotic analytical bounds (Fig. 1c).

In the areas of communication net-
works” and neurcanatomy”, the issue of
routing without 2 global network organiza-
tion has been considered; also in social psy-
chology and information foraging some of
the cues that individuals use to construct
paths through a social network or hyper-
linked environment have been discovered™".
Although | have focused on a very clean
maodel, [ believe that a more general conclu-
sion can be drawn for small-weorld networks

namely that the correlation between local

etrnirtura and lnna_ranme canmacrtiane mea

Decentralized algorithms for networks embedded in space.




Routing algorithms for temporal networks

Definition of the stochastic shortest path problem when the network is not
deterministic

Algorithms to find shortest paths

Approximate, decentralized algorithm finding good paths does not require the
knowledge of the whole system.



Routing on deterministic networks

We associate a weight
1;;, representing a cost or travel time, with each edge

(7,7). A path ¢ with k steps is a sequence of k + 1 nodes
¢ ={i1,...,ik+1} that are connected to one another via

edges. The weight Ty of a path £ is given by the sum of
the weights of its constituent edges:

k

Ty = ZTijijJrl '

J=1

The shortest-path problem (SPP) aims to determine the
path from an origin node to a target node that has the
smallest total weight. In the DSPP, each edge weight T3
is deterministic, and a path with minimal total weight is
considered to be optimal.



Routing on stochastic networks

The weights are now stochastic variables, distributed with a given probability.
The probability that edge ij has weight t is:

pi; (¢)

This random variable can be:

- a nondeterministic travel time in a transportation networks

- the waiting time of a random walker before an edge appears on a temporal
network

In this work, we assume that:
- weights are independent of each other,
- the PDFs do not change during the routing process

=> Distributions are assigned to edges instead of weights (scalar)



Routing on stochastic networks

The probability for a path | to have a certain weight is:

P = (5P ) 0 )

where the right-hand side denotes k consecutive convo-
lutions. The probability to traverse the path £ and incur

a weight T, < ¢ 1s given by the cumulative distribution
function (CDF)

g (£) = /ﬂ "dt o (1)



What is the shortest path?

In contrast with the deterministic case, there is no longer a unique concept of
optimality

| | | i
1 1.0F = = =L rm.rwde— e
Frank defines a path to be . T:/VES"‘”"* T |
optimal if its cdf surpasses a = 08F- - - R .
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FIG. 1: Comparison of path optimality criteria using CDF's
of three paths. Fan et al.’s criterion prefers paths 2 and 3 to
path 1 but cannot discriminate between the CDFs of paths 2
and 3. Frank’s criterion prefers path 2 to path 3 but cannot
be applied to path 1. The joint criterion is applicable to all
CDF's and chooses path 2 as the optimal one.

Y. Y. Fan, R. E. Kalaba, and J. E. Moore, Journal of Optimization Theory and Applications 127, 497(2005).
H. Frank, Operations Research 17, pp. 583(1969).



What is the shortest path?

In contrast with the deterministic case, there is no longer a unique concept of
optimality
Short time budget
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FIG. 1: Comparison of path optimality criteria using CDF's
of three paths. Fan et al.’s criterion prefers paths 2 and 3 to
path 1 but cannot discriminate between the CDFs of paths 2
and 3. Frank’s criterion prefers path 2 to path 3 but cannot
be applied to path 1. The joint criterion is applicable to all
CDF's and chooses path 2 as the optimal one.

Y. Y. Fan, R. E. Kalaba, and J. E. Moore, Journal of Optimization Theory and Applications 127, 497(2005).
H. Frank, Operations Research 17, pp. 583(1969).



What is the shortest path?

In contrast with the deterministic case, there is no longer a unique concept of
optimality
Long time budget

| | | i
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FIG. 1: Comparison of path optimality criteria using CDF's
of three paths. Fan et al.’s criterion prefers paths 2 and 3 to
path 1 but cannot discriminate between the CDFs of paths 2
and 3. Frank’s criterion prefers path 2 to path 3 but cannot
be applied to path 1. The joint criterion is applicable to all
CDF's and chooses path 2 as the optimal one.

Y. Y. Fan, R. E. Kalaba, and J. E. Moore, Journal of Optimization Theory and Applications 127, 497(2005).
H. Frank, Operations Research 17, pp. 583(1969).



What is the shortest path?

In contrast with the deterministic case, there is no longer a unique concept of
optimality
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FIG. 1: Comparison of path optimality criteria using CDF's
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.Jo!nt criterion: Frank (_:rlterlon it path 1 but cannot discriminate between the CDFs of paths 2
it finds a path, otherwise we and 3. Frank’s criterion prefers path 2 to path 3 but cannot
use Fan be applied to path 1. The joint criterion is applicable to all
CDF's and chooses path 2 as the optimal one.

Y. Y. Fan, R. E. Kalaba, and J. E. Moore, Journal of Optimization Theory and Applications 127, 497(2005).
H. Frank, Operations Research 17, pp. 583(1969).



Finding the best path: A centralized algorithm

Routing table to reach a target r from all other nodes, solution of

u; (t) = max j:; pij () u; (t—1t") dt'| , (2)

jeJ;

ur (t) =1,

(3)

ui(t) is the probability to arrive at node r starting from node i with a total time no

longer than t

When on i, the node to chose to optimize the path is:

g; (t) = arg max
JEJ;

, _
f pij () u; (t—t") dt’
0

Y. Y. Fan, R. E. Kalaba, and J. E. Moore, Journal of Optimization Theory and Applications 127, 497(2005).



Finding the best path: A centralized algorithm

Routing table to reach a target r from all other nodes, solution of

u; (t) = max fﬂ pij (t)u; (t—t') dt’| ,  (2)
u, (t) =1, (3)

ui(t) is the probability to arrive at node r starting from node i with a total time no
longer than t
When on i, the node to chose to optimize the path is:

o, _
g; (t) = arg max f pii () u; (t—t") dt’
jEJ; JO il

... can be solved recursively, but requires global knowledge of the system
because of the recurrence

Y. Y. Fan, R. E. Kalaba, and J. E. Moore, Journal of Optimization Theory and Applications 127, 497(2005).



Finding the best path: A decentralized algorithm

We build an estimation function f(i,j,t) that estimates the arrival probability
between i and j.

1. The network is embedded in a metric space. Let dij the physical distance
between two nodes
(proximity will help us to guide travellers)
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Navigation in small world networks, Kleinberg, Nature 2000



Finding the best path: A decentralized algorithm

We build an estimation function f(i,j,t) that estimates the arrival probability
between i and j.

1. The network is embedded in a metric space. Let dij the physical distance
between two nodes

(proximity will help us to guide travellers)

2. Let gj be the physical distance of the shortest path between two nodes, and
assume that
9ij ~ h(dsj)
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Finding the best path: A decentralized algorithm

We build an estimation function f(i,j,t) that estimates the arrival probability
between i and j.

1. The network is embedded in a metric space. Let dij the physical distance
between two nodes
(proximity will help us to guide travellers)

2. Let gj be the physical distance of the shortest path between two nodes, and
assume that
9ij ~ h(dsj)

3. One estimates the number of steps between i and j by

=[]~ 252

The weight on each step is chosen uniformly at random from the known weights
associated with edges



Finding the best path: A decentralized algorithm

Under these assumptions, we build the estimation function

t f ko ; Ce ,
fli,git) = ./f;dt (kilp) ('), ifi#j,

1, if i = j

estimating the probability for a path from i to j to have a weight smaller than t

Advantage: the estimation function is calculated by using properties of the spatial
embedding alone, and does not involve the knowledge of the graph as a whole.




Finding the best path: A decentralized algorithm

Under these assumptions, we build the estimation function
; ?

o df’(mﬁ){t’]._ if 1 3£ 3,
fli,5it)= ./n; k=1

1, if i =7

and use it to build a local algorithm, where we estimate the exact cdf for nodes
where we have no information

known




Numerical tests

Simulations on two-dimensional lattices with short-cuts (a la Kleinberg)

To determine edge weights, we assign lognormal PDF's
Pin (i, 0;t) with mean p and standard deviation o cho-

sen uniformly at random in the interval [0.5, 1.5].
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Numerical tests

Simulations on two-dimensional lattices with short-cuts (a la Kleinberg)

To determine edge weights, we assign lognormal PDF's
Pin (4, 0;t) with mean p and standard deviation o cho-
sen uniformly at random in the interval [0.5, 1.5].
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Numerical tests

Simulations on two-dimensional lattices with short-cuts (a la Kleinberg)

To determine edge weights, we assign lognormal PDF's
Pin (4, 0;t) with mean p and standard deviation o cho-
sen uniformly at random in the interval [0.5, 1.5].
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Time

FIG. 1: Comparison of path optimality criteria using CDFs
of three paths. Fan et al.’s criterion prefers paths 2 and 3 to
path 1 but cannot discriminate between the CDFs of paths 2
and 3. Frank’s criterion prefers path 2 to path 3 but cannot
be applied to path 1. The joint criterion is applicable to all
CDFs and chooses path 2 as the optimal one.



Numerical tests

Simulations on two-dimensional lattices with short-cuts (a la Kleinberg)

To determine edge weights, we assign lognormal PDF's
Pin (4, 0;t) with mean p and standard deviation o cho-
sen uniformly at random in the interval [0.5, 1.5].
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Numerical tests

Chicago road network (with 542 junctions)
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Computational time

Centralized algorithm: finding the shortest path between two nodes requires
operations on the full network => t ~ N@, with a close to 1.

Decentralized algorithm: only local searches => sublinear scaling t ~ N°, with
b<1
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Conclusion

Need for algorithms for temporal networks

Temporal network is modelled as a stochastic process, where each edge is
assigned a probability distribution

Routing: centralized (more efficient) versus decentralized (faster) algorithms

Efficient algorithms for community detection, block modelling in such stochastic
systems?

Possibility to take advantage of the observed temporal patterns to guide the
development of algorithms?

Decentralized Routing on Spatial Networks with Stochastic Edge Weights, Till Hoffmann, R.L. and Mason Porter, PRE 2013
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