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Network science in a nutshell
A static network is built from empirical data or from a model

A model (SI, synchronization ) is studied on the network

No memory!

Trajectories: 
The process evolves by 
selecting links 
irrespectively of the 
previous steps

Timings:
The process evolves 
either at discrete times or 
following a Poisson 
process

Implicit Markov assumption

How realistic is this modelling assumption? If unrealistic, is it possible 
to bring memory into the modelling?



Dynamics on stochastic temporal networks

More and more empirical data incorporate information about the timing of 
activation of edges (e.g. when a phone call is made)

What is the effect of the temporality of the network on a spreading process?

Temporal Networks, Petter Holme, Jari Saramäki, Phys. Rep. 519, 97-125 (2012)

Non-trivial patterns of activation of nodes and edges
Burstiness: intermittent switching between periods of low activity and high 
activity, and a fat-tailed inter-event time distributions.



Dynamics on stochastic temporal networks

More and more empirical data incorporate information about the timing of 
activation of edges (e.g. when a phone call is made)

Temporal network, 
usually studied by 
means of computer 
simulations

What is the effect of the temporality of the network on a spreading process?

Static network 
representation where the 
timing of events are 
Poisson processes

Stochastic temporal network 
where the sequence of activation 
times is a stochastic model that 
preserves the observed inter-
event distribution

Temporal Networks, Petter Holme, Jari Saramäki, Phys. Rep. 519, 97-125 (2012)



From data to models

We focus on the activation of edges going from i to j.

Let us consider a system of N nodes observed during a time interval T

The exact sequence of activation times is by a random sequence 
where events take place according to an inter-activation time fitted on 
the data

probability to observe a time interval of 
duration in                 between two activations 
of the edge

expected time between two activations 
of an edge



From data to models

When modeling the diffusion of an entity on the network, the distribution fij(τ) 
only plays an indirect role. The  important quantity is instead the waiting time 
distribution ψij(t) that the entity arriving on i has to wait for a duration t before 
an edge towards j is available.

In epidemic spreading, it is the time it takes for a newly infected node to 
spread the infection further via the corresponding link.

Assuming that the activations of neighbouring edges are independent

A.O. Allen. Probability, Statistics, Queueing Theory: With Computer Science Applications, 1990.

If the activations of neighbouring edges are independent, \psiij(t) can be 
directly measured in empirical data



From data to models

At a fixed value of the average inter-activation time, the waiting time can be 
arbitrarily large if the variance of inter-activation times is sufficiently large.
This paradox, often called waiting time paradox or bus paradox in queuing 
theory, is an example of length-biased sampling. 

Waiting-times and inter-activation times have the same distribution when the 
process is Poissonian, in which case

Their tail has the same nature in the case of power-law tails

A.O. Allen. Probability, Statistics, Queueing Theory: With Computer Science Applications, 1990.



Effect on spreading

Which properties of the waiting time tend to affect (accelerate or slow down) 
spreading processes: 
The average waiting time? 
Its variance? 
The tail of the distribution? 

In the literature, authors focus on a limited number of families of distributions 
(gamma, power-law, stretched exponential, log-normal), and on the effect of 
the tail of the distribution.



Effect on spreading

Different temporal properties affect different spreading models, and different 
spreading properties:

Time ordering of events, how the probability mass of different probabilities 
are distributed:
- Biases in the trajectories of random walkers (structural effect on mixing 
time)
- Epidemic threshold in epidemic spreading



Effect on spreading: Random Walks
A walker located at a node i remains on it until an edge leaving i toward some 
node j appears. When such an event occurs, the walker jumps to j without delay 
and then waits until an edge leaving j appears. 

The probability for the walker to jump to j depends on ψij (t), but also on all ψik (t), 
where k are neighbours of i, because the walker takes the first edge 
available for transport. Once a walker has left a node, edges leaving this node 
become useless for transport. For this reason, the probability to actually make a 
step from i to j at time t is given by 

The probability for making a jump to node j is given by the effective 
transition matrix

When two neighbours: 

Generalized Master Equations for Non-Poissonian Dynamics on Networks, Till Hoffmann, Mason 
Porter and R.L., Physical Review E 2012



Effect on spreading: Random Walks



Effect on spreading: Random Walks



Effect on spreading: Epidemic spreading
Epidemic spreading differs from random walk processes because the 
number of infected individuals is not conserved. It may decrease when an 
infected person recovers, or increase when an infected person infects 
several of its contacts. 

When applied on stochastic temporal networks, standard models of 
epidemic spreading are characterized by two distributions: i) the probability 
distribution ψij (t) that the infected node i makes a contact sufficient to 
transmit the disease to node j at time t, after he has been infected at time 0; 
the probability distribution ri (t) that node i infected by the disease recovers 
at time t. 

As an infected individual can only transmit the disease to a susceptible 
neighbor if it is still infected at the time of contact, the probability of 
transmission from i to j, at time t after i has been infected is given by

The overall probability that node i 
infects node j before it recovers, called 
transmissibility, is given by 



Effect on spreading: Epidemic spreading

Transmissibility (= the probability that an edge leads to a new infection) 
directly affects the basic reproduction number R, namely the average 
number of additional people that a person infects before recovering, in the 
limit when a vast majority of the population is susceptible. 

The point R = 1 defines the epidemic threshold separating between growing 
and decreasing spreading.

In tree-like networks, where all nodes have the same transmissibility P, one 
finds R = P ⟨k(k − 1)⟩/⟨k⟩, where ⟨k(k − 1)⟩/⟨k⟩ is the expected number of 
susceptible neighbors of an infected node. The epidemic threshold is thus 
reduced by reducing the transmissibility, at a fixed topology.

B. Karrer and M. E. J. Newman. Phys. Rev. E 82, 016101 (2010). 



Effect of the shape of the distribution

In general, these equations define the overall probability that an event A 
takes place before some other event B 

It is not the shape of the tail, nor the moments of the distribution, that affect 
the pathways of diffusion. What matters is instead the relative position of 
one distribution with another distribution. For an edge to be important, it 
should appear often before some other random event.

Burstiness and spreading on temporal networks, R.L., L. Tabourier and J.C. Delvenne, EPJB 2013 



Effect of the shape of the distribution
Let us consider epidemic spreading on a regular tree of identical nodes with 
degree 3. Each node has the recovery distribution r(t) = δ(t − 1), e.g. 
recovery times occur exactly at the average value 1, and each edge is 
characterized by the waiting time distribution 

where α ∈ [0, 1] tunes the shape of the distribution. For any value of α: i) the 
distribution is properly normalized; ii) its average is infinite; iii) it exhibits a 
power-law tail with exponent 2. 



Effect of the shape of the distribution
Let us consider epidemic spreading on a regular tree of identical nodes with 
degree 3. Each node has the recovery distribution r(t) = δ(t − 1), e.g. 
recovery times occur exactly at the average value 1, and each edge is 
characterized by the waiting time distribution 

where α ∈ [0, 1] tunes the shape of the distribution. For any value of α: i) the 
distribution is properly normalized; ii) its average is infinite; iii) it exhibits a 
power-law tail with exponent 2. 

Despite sharing these properties, the transmissibility of an edge 
continuously varies between 0 and 1 when varying α, as 

This observations implies qualitatively and quantitatively different spreading 
behaviours when tuning , as the system is above the epidemic threshold 
when α > 1/2, and below otherwise. important factor is instead the time-
ordering of events, 



Effect on spreading

Different temporal properties affect different spreading models, and different 
spreading

Time ordering of events, how the probability mass of different probabilities 
are distributed:
- biases in the trajectories of random walkers (structural effect on mixing 
time)
- Epidemic threshold in epidemic spreading

Variance, exponential cut-off and spectral gap:
- mixing time for random walker processes



Mixing time

For discrete time random walks on static networks:

We consider a strongly connected, acyclic underlying network

For a Poisson, continuous-time random walks on static networks:

The second dominant eigenvalue (spectral gap) determines the 
characteristic time necessary for the process to reach stationarity 



Mixing time
In the case of continuous-time random walks with (the same) arbitrary 
waiting-time distribution:

Development in small s gives the long-time behaviour:

Characteristic time of the 
exponential tail (cut-off)



Mixing time

Combination of temporal and structural information: burstiness slows down 
the walker more efficiently on networks with large epsilon: random networks 
that have no bottlenecks, such as the Erdos-Renyi and configuration models, 
or small diameter graphs with no communities.

This factor incorporates the variance of the waiting time, not that of the inter-
event time !!!!!!



Mixing time

Either of the three factors may be dominant in real-life data.

Bottlenecks, burstiness, and fat tails regulate mixing times of non-Poissonian random walks, J.-C. Delvenne, 
Renaud Lambiotte and L. E. C. Rocha, arXiv:1309.4155



Effect on spreading

Different temporal properties affect different spreading models, and different 
spreading

Time ordering of events, how the probability mass of different probabilities 
are distributed:
- biases in the trajectories of random walkers (structural effect on mixing 
time)
- Epidemic threshold in epidemic spreading

Variance, exponential cut-off and spectral gap:
- mixing time for random walker processes
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Correlations between successive events: effect on the spectral gap



From data to models

When modeling the diffusion of an entity on the network, the distribution fij(τ) 
only plays an indirect role. The  important quantity is instead the waiting time 
distribution ψij(t) that the entity arriving on i has to wait for a duration t before 
an edge towards j is available.

In epidemic spreading, it is the time it takes for a newly infected node to 
spread the infection further via the corresponding link.

Assuming that the activations of neighbouring edges are independent

A.O. Allen. Probability, Statistics, Queueing Theory: With Computer Science Applications, 1990.

If the activations of neighbouring edges are independent, \psiij(t) can be 
directly measured in empirical data



Memory affects mixing time

Correlations between the activation times of neighbouring edges

=> induces non-random pathways: where one goes to depends on where 
one comes from

Memory network
Betweenness preference Second-order Markov
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Networks with Memory, Martin Rosvall, Alcides V. Esquivel, Andrea Lancichinetti, Jevin D. West, Renaud Lambiotte, 
arXiv:1305.4807
Slow-Down vs. Speed-Up of Information Diffusion in Non-Markovian Temporal Networks, I Scholtes, N Wider, R 
Pfitzner, A Garas, C Juan Tessone and F Schweitzer, arXiv:1307.4030



Networks with Memory, Martin Rosvall, Alcides V. Esquivel, Andrea Lancichinetti, Jevin D. West, Renaud Lambiotte, 
arXiv:1305.4807
Slow-Down vs. Speed-Up of Information Diffusion in Non-Markovian Temporal Networks, I Scholtes, N Wider, R 
Pfitzner, A Garas, C Juan Tessone and F Schweitzer, arXiv:1307.4030

Memory affects mixing time

Second-order Markov: transitions from directed edges to directed edge 
(memory node)
Memory may induce biases in the transition between memory nodes 



Does memory accelerate or slow-down diffusion?

Scholtes et al. show numerically that the spectral gap can either increase or 
decrease in different real-life and artificial systems
Rosvall et al. show that modularity increases in empirical systems (=> slows 
down diffusion)

We look for an explicit expression for the effect of memory on the spectral 
gap (and hence on the mixing time)

Networks with Memory, Martin Rosvall, Alcides V. Esquivel, Andrea Lancichinetti, Jevin D. West, Renaud Lambiotte, 
arXiv:1305.4807
Slow-Down vs. Speed-Up of Information Diffusion in Non-Markovian Temporal Networks, I Scholtes, N Wider, R 
Pfitzner, A Garas, C Juan Tessone and F Schweitzer, arXiv:1307.4030

Memory affects mixing time



Memory affects mixing time

Random walk on the memory network

If the dynamics is memoryless, uniform 
transition:

(Left and right) eigenvectors of the 
spectral gap associated to the best bi-
partition of the network (Fiedler)

Small deviation to the Markovian case
and perturbation analysis:



Memory affects mixing time

Interplay between memory and the (dominant) bi-modular structures:

- if memory enhances flows inside communities => slowing down of diffusion

- if memory enhances flows across communities => acceleration of diffusion



Memory affects mixing time

The non-Markovian dynamics is modelled as follows: memory nodes are 
partitioned into two groups. The weight of a transition between nodes of the same 
type (different types) is 1+ε (1-ε).

Physical network Memory network



Memory affects mixing time
Physical network Memory network



Conclusion
Theoretical framework for temporal networks: identification of the properties 
of temporal patterns of edges and nodes that affect pathways of diffusion 
on time-evolving networks.

Dynamics affect diffusion in different ways:

Importance of the time-ordering of events to define the importance of an 
edge => leads to biases for random walks and modifies the epidemic 
threshold (the bature of the tail of the distribution only has an indirect effect)

Continuous-time random walks: mixing time is determined by a 
combination of three factors: the spectral gap (structural bottlenecks, the 
second moment of the waiting time distribution, and its exponential tail. 
Mixing time is more sensitive to temporal bursts in the absence of 
topological bottlenecks. 

Second-order Markov process: temporal correlations modify flows of 
probability. Memory either slows down or accelerates diffusion depending on 
the rearrangement of flows across the modular structure of the system
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