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Network science in a nutshell
A static network is built from empirical data or from a model

A model (SI, synchronization ) is studied on the network

No memory!

Trajectories: 
The process evolves by 
selecting links 
irrespectively of the 
previous steps

Timings:
The process evolves 
either at discrete times or 
following a Poisson 
process

Implicit Markov assumption

How realistic is this modelling assumption? If unrealistic, is it possible 
to bring memory into the modelling?

Networks with Memory, Martin Rosvall, Alcides V. Esquivel, Andrea Lancichinetti, Jevin D. West, 
Renaud Lambiotte, arXiv:1305.4807
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Dynamics on stochastic temporal networks

More and more empirical data incorporate information about the timing of 
activation of edges (e.g. when a phone call is made)

What is the effect of the temporality of the network on a spreading process?

Temporal Networks, Petter Holme, Jari Saramäki, Phys. Rep. 519, 97-125 (2012)

Non-trivial patterns of activation of nodes and edges
Burstiness: intermittent switching between periods of low activity and high 
activity, and a fat-tailed inter-event time distributions.











Dynamics on stochastic temporal networks

More and more empirical data incorporate information about the timing of 
activation of edges (e.g. when a phone call is made)

Temporal network, 
usually studied by 
means of computer 
simulations

What is the effect of the temporality of the network on a spreading process?

Static network 
representation where the 
timing of events are 
Poisson processes

Stochastic temporal network 
where the sequence of activation 
times is a stochastic model that 
preserves the observed inter-
event distribution

Temporal Networks, Petter Holme, Jari Saramäki, Phys. Rep. 519, 97-125 (2012)



From data to models

We focus on the activation of edges going from i to j.

Let us consider a system of N nodes observed during a time interval T

The exact sequence of activation times is by a random sequence 
where events take place according to an inter-activation time fitted on 
the data

probability to observe a time interval of 
duration in                 between two activations 
of the edge

expected time between two activations 
of an edge



From data to models

When modeling the diffusion of an entity on the network, the distribution fij(τ) 
only plays an indirect role. The  important quantity is instead the waiting time 
distribution ψij(t) that the entity arriving on i has to wait for a duration t before 
an edge towards j is available.

In epidemic spreading, it is the time it takes for a newly infected node to 
spread the infection further via the corresponding link.

Assuming that the activations of neighbouring edges are independent

A.O. Allen. Probability, Statistics, Queueing Theory: With Computer Science Applications, 1990.

If the activations of neighbouring edges are dependent, ψij(t) can be directly 
measured in empirical data



From data to models

At a fixed value of the average inter-activation time, the waiting time can be 
arbitrarily large if the variance of inter-activation times is sufficiently large.
This paradox, often called waiting time paradox or bus paradox in queuing 
theory, is an example of length-biased sampling. 

A.O. Allen. Probability, Statistics, Queueing Theory: With Computer Science Applications, 1990.

Waiting-times and inter-activation times have the same distribution when the 
process is Poissonian, in which case

Their tail has the same nature in the case of power-law tails



Effect on spreading

In the literature, authors focus on a limited number of families of distributions 
(gamma, power-law, stretched exponential, log-normal), and on the effect of 
the tail of the distribution.

“... For all graph classes, the epidemic threshold significantly increases with 
the power exponents alpha.” (parameter of the Weibull)



Effect on spreading

In the literature, authors focus on a limited number of families of distributions 
(gamma, power-law, stretched exponential, log-normal), and on the effect of 
the tail of the distribution.

“... we have shown both analytically and numerically that epidemic 
outbreaks of the SIR model can be strongly suppressed, and even 
completely blocked, by the heavy-tailed contact dynamics”



Effect on spreading

Which properties of the waiting time tend to affect (accelerate or slow down) 
spreading processes: 
The average waiting time? 
Its variance? 
The tail of the distribution? 

In the literature, authors focus on a limited number of families of distributions 
(gamma, power-law, stretched exponential, log-normal), and on the effect of 
the tail of the distribution.

None of those. What actually matters is the time ordering of events, how 
the probability mass of different probabilities are distributed.

Some distribution with some parameters propagates faster than some other 
distribution with other distributions.



Effect on spreading: Random Walks
A walker located at a node i remains on it until an edge leaving i toward 
some node j appears. When such an event occurs, the walker jumps to j 
without delay and then waits until an edge leaving j appears. 

The probability for the walker to jump to j depends on ψij (t), but also on all 
ψik (t), where k are neighbours of i, because the walker takes the first edge 
available for transport. Once a walker has left a node, edges leaving this 
node become useless for transport. For this reason, the probability to 
actually make a step from i to j at time t is given by 

The probability for making a jump to node j is given by the effective 
transition matrix

When two neighbours: 

Generalized Master Equations for Non-Poissonian Dynamics on Networks, Till Hoffmann, Mason 
Porter and R.L., Physical Review E 2012



Effect on spreading: Random Walks



Effect on spreading: Random Walks

The stationary solution is 

Normalisation 
constant

Average time spend on a 
node before leaving it

Dominant eigenvector of 
the effective transition 
matrix

The time spent on node is given by the frequency to arrive on it 
multiplied by the waiting time spent on it.



Effect on spreading: Random Walks

The stationary solution is 

Depends on the whole organisation 
of the graph, and the shape of the 
waiting time distribution (not only on 
its average)



Effect on spreading: Random Walks



Effect on spreading: Epidemic spreading
Epidemic spreading differs from random walk processes because the 
number of infected individuals is not conserved. It may decrease when an 
infected person recovers, or increase when an infected person infects 
several of its contacts. 

When applied on stochastic temporal networks, standard models of 
epidemic spreading are characterized by two distributions: i) the probability 
distribution ψij (t) that the infected node i makes a contact sufficient to 
transmit the disease to node j at time t, after he has been infected at time 0; 
the probability distribution ri (t) that node i infected by the disease recovers 
at time t. 

As an infected individual can only transmit the disease to a susceptible 
neighbor if it is still infected at the time of contact, the probability of 
transmission from i to j, at time t after i has been infected is given by

The overall probability that node i 
infects node j before it recovers, called 
transmissibility, is given by 



Effect on spreading: Epidemic spreading

Transmissibility (= the probability that an edge leads to a new infection) 
directly affects the basic reproduction number R, namely the average 
number of additional people that a person infects before recovering, in the 
limit when a vast majority of the population is susceptible. 

The point R = 1 defines the epidemic threshold separating between growing 
and decreasing spreading.

In tree-like networks, where all nodes have the same transmissibility P, one 
finds R = P ⟨k(k − 1)⟩/⟨k⟩, where ⟨k(k − 1)⟩/⟨k⟩ is the expected number of 
susceptible neighbors of an infected node. The epidemic threshold is thus 
reduced by reducing the transmissibility, at a fixed topology.

B. Karrer and M. E. J. Newman. Phys. Rev. E 82, 016101 (2010). 



Effect of the shape of the distribution

In general, these equations define the overall probability that an event A 
takes place before some other event B 



Effect of the shape of the distribution
N.B.

Laplace transform in the variable



Effect of the shape of the distribution

In general, these equations define the overall probability that an event A 
takes place before some other event B 

It is not the shape of the tail, nor the moments of the distribution, that affect 
the pathways of diffusion. What matters is instead the relative position of 
one distribution with another distribution. For an edge to be important, it 
should appear often before some other random event.



Effect of the shape of the distribution
Let us consider epidemic spreading on a regular tree of identical nodes with 
degree 3. Each node has the recovery distribution r(t) = δ(t − 1), e.g. 
recovery times occur exactly at the average value 1, and each edge is 
characterized by the waiting time distribution 

where α ∈ [0, 1] tunes the shape of the distribution. For any value of α: i) the 
distribution is properly normalized; ii) its average is infinite; iii) it exhibits a 
power-law tail with exponent 2. 



Effect of the shape of the distribution
Let us consider epidemic spreading on a regular tree of identical nodes with 
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recovery times occur exactly at the average value 1, and each edge is 
characterized by the waiting time distribution 

where α ∈ [0, 1] tunes the shape of the distribution. For any value of α: i) the 
distribution is properly normalized; ii) its average is infinite; iii) it exhibits a 
power-law tail with exponent 2. 

Despite sharing these properties, the transmissibility of an edge 
continuously varies between 0 and 1 when varying α, as 

This observations implies qualitatively and quantitatively different spreading 
behaviours when tuning α, as the system is above the epidemic threshold 
when α > 1/2, and below otherwise. The important factor is instead the time-
ordering of events, 



Conclusion

Theoretical framework for temporal networks

Identification of the properties of temporal patterns of edges and nodes that 
affect pathways of diffusion on time-evolving networks. 

It is not the tail of the inter-event time distribution that matters, nor its 
variance. The important factor is instead the time-ordering of events: 
the importance of an edge is the overall probability that it appears before 
some other event takes place. This measure of dynamical weight depends 
more critically on the bulks of the distribution rather than on their tails, 
because the probability mass is mainly concentrated in the bulk. In general, 
if the process is non-Poisson, the importance of an edge is in general not 
proportional to its number of activations. 

Future work will focus on the transient properties of the diffusive processes, 
(mixing time or peak time), and on the effect of temporality on routing.

Decentralized Routing on Spatial Networks with Stochastic Edge Weights, Till Hoffmann, R.L. and 
Mason Porter, submitted
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Job opening

One post-doc position for the EU Optimizr project starting in September:
cascades of information in omline media


