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Network science in a nutshell
A static network is built from empirical data or from a model

A model (Sl, synchronization ) is studied on the network

—) NO memory!

Trajectories: Timings:

The process evolves by The process evolves
selecting links either at discrete times or
irrespectively of the following a Poisson
previous steps process

—) |mplicit Markov assumption

How realistic is this modelling assumption? If unrealistic, is it possible
to bring memory into the modelling?

Networks with Memory, Martin Rosvall, Alcides V. Esquivel, Andrea Lancichinetti, Jevin D. West,
Renaud Lambiotte, arXiv:1305.4807
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Dynamics on stochastic temporal networks

What is the effect of the temporality of the network on a spreading process?

More and more empirical data incorporate information about the timing of
activation of edges (e.g. when a phone call is made)

Non-trivial patterns of activation of nodes and edges

Burstiness: intermittent switching between periods of low activity and high
activity, and a fat-tailed inter-event time distributions.

Temporal Networks, Petter Holme, Jari Saraméki, Phys. Rep. 519, 97-125 (2012)



Simulations on temporal graphs...

Simulations on temporal graphs

Temporal Networks, P. Holme and J. Saramaki, arXiv:
1108.1780



... and comparison with null models
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FIG. 11: Hlustration of two iypes of randomizaton null-models for contact sequences, (a) shows a contact sequence (the same as in Fig. 1)
In (b) it is randomized by the Randomly Permuted times procedure such that contacts happen the same number of time per edge, and the
aggregated network topology is the same. In (¢) the contact sequence in (&) is randomized by the Randomized edges (RE) procedure. With
RE, the time sequence of the contacts along an edge is conserved, and so 15 the degree sequence of the onginal netwark, but all other structure
of the wpology is desroved. (The later statement is perhaps not so well illusirated by this figure as there are not $0 many graphs with the
degree sequence of the original, aggregate graph.)



... and comparison with null models
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FIG. 1: (color online) (Left) Fraction of infected nodes
(I(t)/N) as a function of time for the original event sequence
(o) and null models: equal-weight link-sequence shuffled
DCWDB (¢). link-sequence shuffled DCB (4). time-shuffled
DCW () and configuration model D (7). Inset: (I(f)/N) for
the early stages. illustrating differences in the times to reach
(I(t)/N} = 20%. (Right) Distribution of full prevalence times
P(ts) due to randomness in initial conditions.



... but lack of theoretical understanding

® slowing down compared to random times:

see e.g. Small but slow world: how network topology and burstiness slow down spreading,
M. Karsai et al, Phys Rev E 83,025102(R) (201 I); Dynamical strength of social ties in
information spreading, Miritello et al, Phys. Rev. E 83,045102(R) (201 1)

® faster than random reference: s

Simulated Epidemics in an Empirical Spatiotemporal Network of 50,185 Sexual Contacts,
L.E.C. Rocha et al, PLoS Comput. Biol. 7,e1001 109 (2011)



Dynamics on stochastic temporal networks

What is the effect of the temporality of the network on a spreading process?

More and more empirical data incorporate information about the timing of
activation of edges (e.g. when a phone call is made)

Temporal network, Static network Stochastic temporal network
usually studied by representation where the where the sequence of activation
means of computer timing of events are times is a stochastic model that
simulations Poisson processes preserves the observed inter-

event distribution

Temporal Networks, Petter Holme, Jari Saraméki, Phys. Rep. 519, 97-125 (2012)



From data to models

Let us consider a system of N nodes observed during a time interval T

We focus on the activation of edges going from i to j.

1 2 -ﬂ,.,;j ;
tiy = {8,620y

The exact sequence of activation times is by a random sequence
where events take place according to an inter-activation time fitted on

the data

probability to observe a time interval of

f?;j (7' )dT — duration in [T, 7+d7] between two activations
of the edge

oo
T fii (T)dT = (T)44 > expected time between two activations
./0 EJ( ) < >” of an edge



From data to models

When modeling the diffusion of an entity on the network, the distribution fj(7)
only plays an indirect role. The important quantity is instead the waiting time
distribution wiji(t) that the entity arriving on i has to wait for a duration t before
an edge towards j is available.

In epidemic spreading, it is the time it takes for a newly infected node to
spread the infection further via the corresponding link.

Assuming that the activations of neighbouring edges are independent

- / G

If the activations of neighbouring edges are dependent, wij(t) can be directly
measured in empirical data

—> Yij (1)

A.O. Allen. Probability, Statistics, Queueing Theory: With Computer Science Applications, 1990.



From data to models

<t>ij — /00 tlbij(t)dt _ %<T2>ij

0 (T)4j

At a fixed value of the average inter-activation time, the waiting time can be
arbitrarily large if the variance of inter-activation times is sufficiently large.
This paradox, often called waiting time paradox or bus paradox in queuing
theory, is an example of length-biased sampling.

Waiting-times and inter-activation times have the same distribution when the
process is Poissonian, in which case

Vi (t) = fij(t) = (t:;-z'j exp (—é) | )

Their tail has the same nature in the case of power-law tails

iz (t) ~ 7% & fii(r) ~ 7@

A.O. Allen. Probability, Statistics, Queueing Theory: With Computer Science Applications, 1990.



Effect on spreading

In the literature, authors focus on a limited number of families of distributions
(gamma, power-law, stretched exponential, log-normal), and on the effect of
the tail of the distribution.

Non-Markovian Infection Spread Dramatically Alters the Susceptible-Infected-Susceptible
Epidemic Threshold in Networks

P. Van Mieghem® and R. van de Bovenkamp

Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology,

P O. Box 5031, 2600 GA Delft, The Netherlands
{Received 28 September 2012; published 5 March 2013)

Most studies on susceptible-infected-susceptible epidemics in networks implicitly assume Markovian
behavior: the time to infect a direct neighbor is exponentially distributed. Much effort so far has been
devoted to characterize and precisely compute the epidemic threshold in susceptible-infected-susceptible
Markovian epidemics on networks. Here, we report the rather dramatic effect of a nonexponential
infection time (while still assuming an exponential curing time) on the epidemic threshold by considering
Weibullean infection times with the same mean, but different power exponent «. For three basic classes of
graphs, the Erdos-Rényi random graph, scale-free graphs and lattices, the average steady-state fraction of
infected nodes is simulated from which the epidemic threshold is deduced. For all graph classes, the
epidemic threshold significantly increases with the power exponents «. Hence, real epidemics that violate
the exponential or Markovian assumption can behave seriously differently than anticipated based on
Markov theory.

DOL: 10.1103/PhysRevLett. 110. 108701 PACS numbers: 89.75.He

“... For all graph classes, the epidemic threshold significantly increases with
the power exponents alpha.” (parameter of the Weibull)



Effect on spreading

In the literature, authors focus on a limited number of families of distributions
(gamma, power-law, stretched exponential, log-normal), and on the effect of
the tail of the distribution.

Absence of epidemic outbreaks with heavy-tailed contact dynamics

Byungjoon Min,' K.-I. Goh,'["] and L-M. Kim'

lﬂe;mf'fm-snﬁ of Physics, Korea University, Seoul 136-713, Korea
(Dated: March 20, 2013)

We study the epidemic spreading process following contact dynamics with heavy-tailed waiting
time distributions. We show both analytically and numerically that the temporal heterogeneity of
contact dynamics can significantly suppress the disease's transmissibility, hence the size of epidemic
outbreak, chstructing the spreading process. Furthermore, when the temporal heterogeneity is
strong encugh, one obtains the vanishing transmissibility, hence the lack of epidemic cutbreaks for
any fnite recovery time, the condition of which was derived.

“... we have shown both analytically and numerically that epidemic
outbreaks of the SIR model can be strongly suppressed, and even
completely blocked, by the heavy-tailed contact dynamics”



Effect on spreading

In the literature, authors focus on a limited number of families of distributions
(gamma, power-law, stretched exponential, log-normal), and on the effect of
the tail of the distribution.

Some distribution with some parameters propagates faster than some other
distribution with other distributions.

Which properties of the waiting time tend to affect (accelerate or slow down)
spreading processes:

The average waiting time?

Its variance?

The tail of the distribution?

None of those. What actually matters is the time ordering of events, how
the probability mass of different probabilities are distributed.



Effect on spreading: Random Walks

A walker located at a node i remains on it until an edge leaving / toward
some node j appears. When such an event occurs, the walker jumps to J
without delay and then waits until an edge leaving j appears.

The probability for the walker to jump to j depends on wj (), but also on all
Wik (t), where k are neighbours of i, because the walker takes the first edge
available for transport. Once a walker has left a node, edges leaving this
node become useless for transport. For this reason, the probability to
actually make a step from i to j at time t is given by

5 () = b O x ][ [ var @)t

k#J

When two neighbours: Ti; (t) = i (t)/ Vi (') dt’
t

The probability for making a jump to node j is given by the effective

transition matrix
T;; = / T (t)dt > Tij =1
0 J

Generalized Master Equations for Non-Poissonian Dynamics on Networks, Till Hoffmann, Mason
Porter and R.L., Physical Review E 2012



Effect on spreading: Random Walks

Generalized Montroll-Weiss Equation (usually for CTRW with non-
Poisson inter-event time statistics on lattices)

_1 (I — Dy (5)) (I—T(S))_lﬂ(ﬂ)

i(s) = -

G = (0= {Dr @} ~60) s K (@) en(t)

| |

Convolution in time Memory kernel

k#i

= 1y (t) X E (1 - fut Uk [t’}dt') .

Effective transition matrix Ti; () = yj (8) % | I.:n} (t)

Time ordering |

= =

Generalized Master Equations for Non-Foissonian Dynamics on Networks, TH., MA.P. and R.L.



Effect on spreading: Random Walks

The stationary solution is

p=PDyx

Dominant eigenvector of
the effective transition
matrix

Normalisation Average time spend on a
constant node before leaving it

The time spent on node is given by the frequency to arrive on it
multiplied by the waiting time spent on it.



Effect on spreading: Random Walks

The stationary solution is

p=PDyx

Depends on the whole organisation
of the graph, and the shape of the
waiting time distribution (not only on

its average)



Effect on spreading: Random Walks
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Generalized Master Equations for Non-Foissonian Dynamics on Networks, TH., MA.P. and R.L.



Effect on spreading: Epidemic spreading

Epidemic spreading differs from random walk processes because the
number of infected individuals is not conserved. It may decrease when an
infected person recovers, or increase when an infected person infects
several of its contacts.

When applied on stochastic temporal networks, standard models of
epidemic spreading are characterized by two distributions: i) the probability
distribution wj (t) that the infected node i makes a contact sufficient to
transmit the disease to node j at time ¢, after he has been infected at time 0;
the probability distribution r; () that node i infected by the disease recovers
at time t.

As an infected individual can only transmit the disease to a susceptible

neighbor if it is still infected at the time of contact, the probability of
transmission from j to j, at time t after i has been infected is given by

P;;(t) = v45(t) ftm ri(t")dt’

The overall probability that node i oo
infects node j before it recovers, called IF’ij — Pij (t)dt
transmissibility, is given by 0




Effect on spreading: Epidemic spreading

Transmissibility (= the probability that an edge leads to a new infection)
directly affects the basic reproduction number R, namely the average
number of additional people that a person infects before recovering, in the
limit when a vast majority of the population is susceptible.

The point R = 1 defines the epidemic threshold separating between growing
and decreasing spreading.

In tree-like networks, where all nodes have the same transmissibility P, one
finds R = P <k(k — 1))/k>, where <k(k — 1))/k) is the expected number of
susceptible neighbors of an infected node. The epidemic threshold is thus
reduced by reducing the transmissibility, at a fixed topology.

B. Karrer and M. E. J. Newman. Phys. Rev. E 82, 016101 (2010).



Effect of the shape of the distribution

Tij (t) = vi; (t) /t " (t") at’ P (t) = ¢i5(0) / ) ri(t")dt’

t
Tij = ‘/[; ngj(t)dt Pij Z/D Pij (t)dﬁ

In general, these equations define the overall probability that an event A
takes place before some other event B

PA = /0 h a(t) /t h b(t")dt'dt



Effect of the shape of the distribution

paA = /0 N a(t) /t h b(t')dt' dt

PB = fﬂ h b(t) /t B a(t")dt'dt

at) = b(t) ——p Pa = Pp = 1/2

N.B.

pa +pB = 1

T'A

) — —rat — —rpgt —
a(t) =rpe"4" and b(t) = rge "B" =———3p DA At TR

b(t) = rBE "Bl png a(t)e "Bdt.
0

Laplace transform in the variable



Effect of the shape of the distribution

Tij (t) = vi; (t) /t " (') at’ P (t) = ¢i5(0) /t ) ri(t")dt’

Tij = /{; Tij(t)dt Pt‘j ZA Pij (t)dt

In general, these equations define the overall probability that an event A
takes place before some other event B

PA = /0 h a(t) /t h b(t")dt'dt

It is not the shape of the tail, nor the moments of the distribution, that affect
the pathways of diffusion. What matters is instead the relative position of
one distribution with another distribution. For an edge to be important, it
should appear often before some other random event.




Effect of the shape of the distribution

Let us consider epidemic spreading on a regular tree of identical nodes with
degree 3. Each node has the recovery distribution r(t) = 3(t — 1), e.g.
recovery times occur exactly at the average value 1, and each edge is
characterized by the waiting time distribution

Q for t<1
+) =
v(t) {1_“ for t>1

where a € [0, 1] tunes the shape of the distribution. For any value of a: i) the
distribution is properly normalized; ii) its average is infinite; iii) it exhibits a
power-law tail with exponent 2.

e.1f

@.a1
@.1



Effect of the shape of the distribution

Let us consider epidemic spreading on a regular tree of identical nodes with
degree 3. Each node has the recovery distribution r(t) = 3(t — 1), e.g.
recovery times occur exactly at the average value 1, and each edge is
characterized by the waiting time distribution

zb(t)={cf_a for t<1

for t>1

where a € [0, 1] tunes the shape of the distribution. For any value of a: i) the
distribution is properly normalized; ii) its average is infinite; iii) it exhibits a
power-law tail with exponent 2.

Despite sharing these properties, the transmissibility of an edge
continuously varies between 0 and 1 when varying a, as

P= fam U(t) /:Q o(t' — 1)dt'dt = fal Y(t)dt = a

This observations implies qualitatively and quantitatively different spreading
behaviours when tuning a, as the system is above the epidemic threshold
when a > 1/2, and below otherwise. The important factor is instead the time-
ordering of events,



Conclusion

Theoretical framework for temporal networks

|dentification of the properties of temporal patterns of edges and nodes that
affect pathways of diffusion on time-evolving networks.

It is not the tail of the inter-event time distribution that matters, nor its
variance. The important factor is instead the time-ordering of events:

the importance of an edge is the overall probability that it appears before
some other event takes place. This measure of dynamical weight depends
more critically on the bulks of the distribution rather than on their tails,
because the probability mass is mainly concentrated in the bulk. In general,
if the process is non-Poisson, the importance of an edge is in general not
proportional to its number of activations.

Future work will focus on the transient properties of the diffusive processes,
(mixing time or peak time), and on the effect of temporality on routing.

Decentralized Routing on Spatial Networks with Stochastic Edge Weights, Till Hoffmann, R.L. and
Mason Porter, submitted
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Job opening

One post-doc position for the EU Optimizr project starting in September:
cascades of information in omline media



